Hướng dẫn giải một số bài tập tọa độ trong không gian nâng cao – Phạm Minh Tuấn

Tài liệu gồm 22 trang tuyển tập 35 bài toán phương pháp tọa độ trong không gian nâng cao kèm lời giải chi tiết.

Trích dẫn tài liệu:
+ Trong không gian với hệ tọa độ Oxyz, một mặt phẳng đi qua điểm M (1; 3; 9) và cắt các tia Ox, Oy, Oz lần lượt tại A (a; 0; 0), B (0; b; 0), C (c; 0; 0) với a, b, c là các số thực dương. Tìm giá trị của biểu thức P= a + b + c để thể tích tứ diện OABC đạt giá trị nhỏ nhất.
[ads]
+ Trong không gian với hệ tọa độ Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có A trùng với gốc của hệ tọa độ. Cho B (a; 0; 0), D (0; a; 0), A’ (0; 0; b) với a, b > 0. Gọi M là trung điểm của cạnh CC’. Xác định tỉ số a/b để hai mặt phẳng (A’BD) và (BDM) vuông góc với nhau.
+ Trong không gian Oxyz, cho hai điểm A (1; 5; 0), B (3; 3; 6) và đường thẳng d: (x + 1)/2 = (y – 1)/-1 = z/2. Điểm M (a, b, c); thuộc d sao cho ΔMAB có diện tích nhỏ nhất, khi đó a + b + c = ?

Ghi chú: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về:
Facebook: TOÁN MATH
Email: toanmath.com@gmail.com