Đề thi khảo sát Toán 12 lần 2 năm 2019 trường Nguyễn Đức Cảnh – Thái Bình

Đề thi khảo sát Toán 12 lần 2 năm 2019 trường THPT Nguyễn Đức Cảnh – Thái Bình được biên soạn nhằm kiểm tra chất lượng giữa học kỳ 2 Toán 12, đồng thời kiểm tra chất lượng ôn tập thi Trung học Phổ thông Quốc gia môn Toán của học sinh trong năm học 2018 – 2019.

Đề thi khảo sát Toán 12 lần 2 năm 2019 trường THPT Nguyễn Đức Cảnh – Thái Bình có mã đề 001, đề gồm 50 câu trắc nghiệm, học sinh làm bài thi Toán trong 90 phút, đề thi có đáp án (đáp án được gạch chân ở phần đề thứ hai).

Trích dẫn đề thi khảo sát Toán 12 lần 2 năm 2019 trường Nguyễn Đức Cảnh – Thái Bình:
+ Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy, SA = a. Tập hợp những điểm M trong không gian sao cho SM tạo với (ABC) góc 45 độ là?
A. Mặt nón dỉnh S có góc ở đỉnh bằng 45 độ. B. Mặt nón đỉnh S, có một đường sinh là SB.
C. Mặt nón đỉnh đỉnh A có một đường sinh là SA. D. Mặt nón đỉnh A có một đường sinh là AB.


+ Cho một đa giác đều có 20 đỉnh nội tiếp trong đường tròn (C). Lấy ngẫu nhiên hai đường chéo trong số các đường chéo của đa giác. Tính xác suất để lấy được hai đường chéo cắt nhau và giao điểm của hai đường chéo này nằm bên trong đường tròn?
+ Cho hai mặt cầu (S1) có tâm I1, bán kính R1 = 1, (S2) có tâm I2 bán kính R2 = 5. Lần lượt lấy hai điểm M1, M2 thuộc hai mặt cầu (S1), (S2). Gọi K là trung điểm của M1M2. Khi M1, M2 di chuyển trên (S1), (S2) thì K quét miền không gian là một khối tròn xoay có thể tích bằng?

XEM TRỰC TUYẾN

Ghi chú: Quý thầy, cô hoặc bạn đọc muốn đóng góp tài liệu cho TOANMATH.com, vui lòng gửi về:
+ Fanpage: TOÁN MATH
+ Email: toanmath.com@gmail.com