Đề thi HSG Toán 11 lần 2 năm 2019 – 2020 cụm trường THPT Thanh Chương – Nghệ An


Nhằm chuẩn bị cho kỳ thi chọn học sinh giỏi môn Toán 11 cấp tỉnh do sở Giáo dục và Đào tạo Nghệ An tổ chức, vừa qua, cụm các trường THPT trên địa bàn huyện Thanh Chương, tỉnh Nghệ An đã tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 11 năm học 2019 – 2020 lần thứ hai.

Đề thi HSG Toán 11 lần 2 năm 2019 – 2020 cụm trường THPT Thanh Chương – Nghệ An gồm có 06 bài toán tự luận, đề thi có 01 trang, học sinh làm bài trong 150 phút, đề thi có lời giải chi tiết.

Trích dẫn đề thi HSG Toán 11 lần 2 năm 2019 – 2020 cụm trường THPT Thanh Chương – Nghệ An:
+ Trong hệ tọa độ Oxy, cho tam giác ABC vuông tại A(2;5) và H là hình chiếu vuông góc của A lên cạnh BC. Gọi I, J(2;-1) và K(6;1) lần lượt là tâm đường nội tiếp của tam giác ABC, ABH, ACH. Chứng minh I là trực tâm của tam giác AJK và tìm tọa độ các đỉnh B, C.
[ads]
+ Cho tứ diện đều ABCD có trọng tâm G, cạnh AB = a; O là tâm của tam giác BCD và M là điểm bất kỳ thuộc mặt phẳng (BCD). Gọi H, K, L lần lượt là hình chiếu vuông góc của M lên các mặt phẳng (ACD), (ABD), (ABC). Mặt phẳng (P) bất kỳ đi qua trọng tâm G, cắt các cạnh AB, AC, AD lần lượt tại B’, C’,  D’. Chứng minh AB/AB’ + AC/AC’ + AD/AD’ = 4. Chứng minh đường thẳng GM luôn đi qua trọng tâm E của tam giác HKL.
+ Cho đa giác đều có 60 đỉnh. Hỏi có bao nhiêu tam giác có 3 cạnh là đường chéo của đa giác đó?

File WORD (dành cho quý thầy, cô): TẢI XUỐNG




Tải tài liệu


Ghi chú: Quý thầy, cô hoặc bạn đọc muốn đóng góp tài liệu cho TOANMATH.com, vui lòng gửi về:
Fanpage: TOÁN MATH
Email: toanmath.com@gmail.com