Đề thi thử THPTQG 2020 môn Toán lần 2 trường THPT Kim Thành – Hải Dương

Chủ Nhật ngày 17 tháng 05 năm 2020, trường THPT Kim Thành, tỉnh Hải Dương tổ chức kỳ thi thử THPT Quốc gia môn Toán năm học 2019 – 2020 lần thứ hai.

Đề thi thử THPTQG 2020 môn Toán lần 2 trường THPT Kim Thành – Hải Dương được biên soạn bám sát cấu trúc đề minh họa tốt nghiệp THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, đề thi có đáp án và lời giải chi tiết.

Trích dẫn đề thi thử THPTQG 2020 môn Toán lần 2 trường THPT Kim Thành – Hải Dương:
+ Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): mx + (m – 1)y – z – 2m – 1 = 0 với m là tham số. Gọi (T) là tập hợp các điểm Hm là hình chiếu vuông góc của điểm H(3;3;0) trên (P). Gọi a và b lần lượt là khoảng cách lớn nhất và khoảng cách nhỏ nhất từ đến một điểm thuộc (T). Khi đó a + b bằng?
+ Anh Việt vay tiền ngân hàng 500 triệu đồng mua nhà và trả góp hàng tháng. Cuối mỗi tháng bắt đầu từ tháng thứ nhất anh trả 10 triệu đồng và chịu lãi suất là 0,9% / tháng cho số tiền chưa trả. Với hình thức hoàn nợ như vậy thì sau bao lâu anh Việt sẽ trả hết số nợ ngân hàng?
[ads]
+ Cho hàm số đa thức bậc bốn y = f(x) và y = g(x) có đồ thị như hình vẽ dưới đây đường đậm hơn là đồ thị hàm số y = f(x). Biết rằng hai đồ thị tiếp xúc với nhau tại điểm có hoành độ là -3 và cắt nhau tại hai điểm nữa có hoành độ lần lượt là -1 và 3 . Tìm tập hợp tất các giá trị thực của tham số m để bất phương trình f(x) ≥ g(x) + m nghiệm đúng với mọi x thuộc [-3;3].
+ Gọi S là tập hợp tất cả các số tự nhiên gồm 9 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ S . Tính xác suất để được chọn có đúng 4 chữ số lẻ và chữ số 0 đứng giữa hai chữ số lẻ (các chữ số liền trước và liền sau của chữ số 0 là các chữ số lẻ).
+ Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) + 1 = m có bốn nghiệm phân biệt?

Ghi chú: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về:
Facebook: TOÁN MATH
Email: toanmath.com@gmail.com