Chuyên đề đường tiệm cận của đồ thị hàm số – Lê Bá Bảo

Tài liệu gồm 57 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, tóm tắt lý thuyết và tuyển chọn các bài tập trắc nghiệm đường tiệm cận của đồ thị hàm số, có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Giải tích 12 chương 1.

I – LÝ THUYẾT
1. Đường tiệm cận đứng.
2. Đường tiệm cận ngang.
3. Đường tiệm cận xiên.
II – MỘT SỐ KẾT QUẢ CẦN LƯU Ý
+ Kết quả 1: Đồ thị hàm số y = (ax + b)/(cx + d) (ad – bc khác 0 và c khác 0) có tiệm cận đứng x = -d/c; tiệm cận ngang y = a/c thì I(-d/c;a/c) là tâm đối xứng của đồ thị hàm số.
+ Kết quả 2: Không tồn tại tiếp tuyến của đồ thị hàm số (H): y = (ax + b)/(cx + d) qua tâm đối xứng của đồ thị (H).
+ Kết quả 3: Đồ thị hàm số (H): y = (ax + b)/(cx + d) có tiệm cận đứng Δ1; tiệm cận ngang Δ2 thì với điểm M bất kì thuộc (H) ta có: T = d(M;Δ1).d(M;Δ2) = |ad – bc|/c^2; T = d(M;Δ1) + d(M;Δ2) >= 2√(|ad – bc|/c^2).
[ads]
III – BÀI TẬP TRẮC NGHIỆM
Dạng 1. Câu hỏi lý thuyết.
Dạng 2. Xác định đường tiệm cận của hàm số.
Dạng 3. Bài toán tham số.
Dạng 4. Tiệm cận của đồ thị hàm ẩn.
Dạng 5. Các bài toán khác.

Ghi chú: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về:
Facebook: TOÁN MATH
Email: [email protected]