Đề học sinh giỏi tỉnh Toán THPT đợt 1 năm 2023 – 2024 sở GD&ĐT Quảng Nam

TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT đợt 1 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 29 tháng 09 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm.

Trích dẫn Đề học sinh giỏi tỉnh Toán THPT đợt 1 năm 2023 – 2024 sở GD&ĐT Quảng Nam:
+ Cho tam giác nhọn ABC (AB < AC). Đường tròn (O) lần lượt tiếp xúc với ba cạnh AB, BC, CA tại ba điểm M, N, K. Gọi S, R lần lượt là giao điểm của đường phân giác ngoài góc A của tam giác ABC với hai đường thẳng KN, MN. Gọi I là giao điểm của hai đường thẳng MS và KR, đường thẳng AN cắt đường tròn (O) tại điểm thứ hai là J. a) Chứng minh I thuộc (O) và sin MKN sin KMN KI KJ. b) Đường tròn ngoại tiếp tam giác AMK cắt đường tròn ngoại tiếp tam giác ABC tại điểm thứ hai là D, OD cắt MK tại E. Gọi (T) là đường tròn đi qua D và tiếp xúc với BC tại N. Chứng minh (T) tiếp xúc với đường tròn ngoại tiếp tam giác ABC và EN là đường phân giác của góc BEC.
+ Tô màu tất cả các đỉnh của đa giác đều (T) có 12 đỉnh bằng hai màu khác nhau, mỗi đỉnh tô một màu. a) Hỏi có bao nhiêu cách tô màu sao cho không có tam giác đều nào mà tất cả các đỉnh của nó cùng màu (các đỉnh của nó là đỉnh của (T))? b) Hỏi có bao nhiêu cách tô màu sao cho có ít nhất một đa giác đều mà tất cả các đỉnh của nó cùng màu (các đỉnh của nó là đỉnh của (T))?

Ghi chú: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về:
Facebook: TOÁN MATH
Email: toanmath.com@gmail.com