Đề thi học sinh giỏi Toán 12 năm 2019 – 2020 trường Đồng Đậu – Vĩnh Phúc

Ngày …/10/2019, trường THPT Đồng Đậu, tỉnh Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi Toán 12 năm học 2019 – 2020, với mục đích tuyển chọn những em học sinh lớp 12 có thành tích học tập môn Toán xuất sắc, thành lập đội tuyển học sinh giỏi Toán 12 cấp trường, tham dự kỳ thi học sinh giỏi Toán 12 cấp tỉnh.

Đề thi học sinh giỏi Toán 12 năm 2019 – 2020 trường Đồng Đậu – Vĩnh Phúc gồm 07 bài toán tự luận, đề thi gồm có 01 trang, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang chấm điểm.


Trích dẫn đề thi học sinh giỏi Toán 12 năm 2019 – 2020 trường Đồng Đậu – Vĩnh Phúc:
+ Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD có phương trình đường chéo AC là x – y + 1 = 0, điểm G(1;4) là trọng tâm tam giác ABC, điểm E (0;-3) thuộc đường cao kẻ từ D của tam giác ACD. Tìm tọa độ các đỉnh của hình bình hành đã cho, biết rằng diện tích tứ giác AGCD bằng 32 và đỉnh A có tung độ dương.
+ Cho đa giác lồi (H) có n đỉnh (n ∈ N, n > 4). Biết số các tam giác có ba đỉnh là đỉnh của (H) và không có cạnh nào là cạnh của (H) gấp 5 lần số các tam giác có ba đỉnh là đỉnh của (H) và có đúng một cạnh là cạnh của (H). Xác định n.
+ Cho hàm số y = (mx – m + 2)/(x + 1) có đồ thị là (C). Tìm tất cả các giá trị của tham số m để đường thẳng d: y = 2x – 1 cắt (C) tại hai điểm phân biệt A, B sao cho góc giữa hai đường thẳng OA, OB bằng 45 độ.


Hướng dẫn DOWNLOAD: XEM HƯỚNG DẪN
Ghi chú: Quý thầy, cô hoặc bạn đọc muốn đóng góp tài liệu cho TOANMATH.com, vui lòng gửi về:
+ Fanpage: TOÁN MATH
+ Email: toanmath.com@gmail.com