Đề kiểm tra Toán 12 năm 2022 trường Nguyễn Khuyến & Lê Thánh Tông – TP HCM


Nhằm hướng đến kỳ thi chính thức tốt nghiệp THPT 2022 môn Toán, TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra định kì môn Toán 12 năm học 2021 – 2022 trường THCS – THPT Nguyễn Khuyến & TH – THCS – THPT Lê Thánh Tông, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 19 tháng 06 năm 2022.

Trích dẫn đề kiểm tra Toán 12 năm 2022 trường Nguyễn Khuyến & Lê Thánh Tông – TP HCM:
+ Cho hàm số f(x) = x4 + bx2 + c (b, c ∈ R) có 3 điểm cực trị x1, x2, x3. Đồ thị hàm số g(x) = mx2 + nx + p (m, n, p ∈ R) đi qua 3 điểm cực trị của đồ thị hàm số y = f(x). Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x) và y = g(x) bằng 4 15. Giá trị của T = b + c − (m + n + p) là?
+ Trong không gian hệ tọa độ Oxyz, cho mặt cầu (S) : (x − 1)2 + (y − 1)2 + z2 = a2 và họ mặt phẳng (Pm) : (m2 + 1)x + 2my + 2√2z = 0. Có bao nhiêu giá trị a để khi m thay đổi luôn có duy nhất một mặt cầu cố định có tâm nằm trên mặt cầu (S) và tiếp xúc với mặt phẳng (Pm)?
+ Cho các số phức z và w thỏa mãn |z| = |w| = 2 và zw + wz + 8 = 0. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = z − iw + 3i. Khi đó M − 5m có giá trị bằng bao nhiêu?




Ghi chú: Quý thầy, cô hoặc bạn đọc muốn đóng góp tài liệu cho TOANMATH.com, vui lòng gửi về:
Fanpage: TOÁN MATH
Email: [email protected]