Đề thi chọn HSG thành phố môn Toán năm 2018 – 2019 sở GD và ĐT Hải Phòng


Đề thi chọn HSG thành phố môn Toán năm 2018 – 2019 sở GD và ĐT Hải Phòng bảng B (bảng không chuyên) được biên soạn theo hình thức tự luận với 7 bài toán, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 02 tháng 11 năm 2018, đề thi có lời giải chi tiết.

Trích dẫn đề thi chọn HSG thành phố môn Toán năm 2018 – 2019 sở GD và ĐT Hải Phòng:
+ Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên 3 bước. Tính xác suất để sau 3 bước đi quân vua trở về ô xuất phát.
+ Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD tâm E, gọi G là trọng tâm tam giác ABE. Điểm K (7;-2) thuộc đoạn ED sao cho
GA = GK. Tìm tọa độ đỉnh A và viết phương trình cạnh AB, biết đường thẳng AG có phương trình 3x – y – 13 = 0 và đỉnh A có hoành độ nhỏ hơn 4.
+ Cho hàm số y = x^3 + 3x^2 – 9x + 1 có đồ thị là (C). Gọi A, B là hai điểm cực trị của (C). Tính diện tích của tam giác OAB, trong đó O là gốc tọa độ.



Tải tài liệu


Ghi chú: Quý thầy, cô hoặc bạn đọc muốn đóng góp tài liệu cho TOANMATH.com, vui lòng gửi về:
Fanpage: TOÁN MATH
Email: toanmath.com@gmail.com