Đề thi học sinh giỏi Toán 10 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam

Vừa qua, sở Giáo dục và Đào tạo Hà Nam đã tổ chức kỳ thi chọn học sinh giỏi khối THPT năm học 2018 – 2019 môn Toán dành cho học sinh lớp 10, đề thi học sinh giỏi Toán 10 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam được biên soạn theo hình thức tự luận với 05 bài toán, thời gian làm bài 180 phút.

Trích dẫn đề thi học sinh giỏi Toán 10 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam:
+ Trong mặt phẳng Oxy cho parabol (P): y = x^2 + mx + 3m – 2, đường thẳng (d): x – y + m = 0 (m là tham số thực) và hai điểm A(-1;-1), B(2;2). Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt M, N sao cho A, B, M, N là bốn đỉnh của hình bình hành.


+ Cho tứ giác lồi ABCD có AC vuông góc với BD và nội tiếp đường tròn tâm O bán kính R = 1. Đặt diện tích tứ giác ABCD bằng S và AB = a, BC = b, CD = c, DA = d. Tính giá trị biểu thức T = (ab + cd )(ad + bc)/S.
+ Trong mặt phẳng Oxy, cho tam giác ABC cân tại A(-1;3). Gọi D là điểm trên cạnh AB sao cho AB = 3AD và H là hình chiếu vuông góc của B trên CD. Điểm M(1/2;-3/2) là trung điểm đoạn HC. Xác định tọa độ đỉnh C, biết đỉnh B nằm trên đường thẳng có phương trình x + y + 7 = 0.

XEM TRỰC TUYẾN

Ghi chú: Quý thầy, cô hoặc bạn đọc muốn đóng góp tài liệu cho TOANMATH.com, vui lòng gửi về:
+ Fanpage: TOÁN MATH
+ Email: toanmath.com@gmail.com