Đề thi chọn HSG Toán 10 lần 1 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội

Thứ Năm ngày 10 tháng 09 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội tổ chức kỳ thi tuyển chọn học sinh giỏi môn Toán lớp 10 năm học 2020 – 2021 lần thứ nhất.

Đề thi chọn HSG Toán 10 lần 1 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề).

Trích dẫn đề thi chọn HSG Toán 10 lần 1 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội:
+ Cho tam giác ABC nhọn nội tiếp trong đường tròn (O). P là một điểm nằm trong tam giác sao cho PB = PC. Lấy điểm Q trên đường tròn ngoại tiếp tam giác PBC và nằm trong tam giác sao cho PQA + OAP = 90 độ. Gọi M là trung điểm của BC. Điểm K thuộc cạnh BC sao cho KAB = MAC. Chứng minh rằng QK vuông góc QP.
+ Tìm tất cả các số nguyên dương n sao cho tất cả các ước nguyên dương (phân biệt) của n có thể sắp xếp thành một bảng hình chữ nhật (mỗi vị trí chứa đúng một số) mà tổng các số trên mỗi hàng bằng nhau; tổng các số trên mỗi cột bằng nhau.
+ Tìm tất cả các bộ ba số (x, y, p) nguyên dương, với p là số nguyên tố thỏa mãn: x^2 – 3xy + p^2.y^2 = 12y.

Ghi chú: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về:
Facebook: TOÁN MATH
Email: toanmath.com@gmail.com