Khối lăng trụ đều có đáy là đa giác đều và các cạnh bên vuông góc với đáy, do đó trong khối lăng trụ đều, ta có thể nhanh chóng xác định độ dài đường cao và diện tích mặt đáy. Các bài toán tính thể tích khối lăng trụ đều thường đi kèm với các giả thiết về độ dài đường chéo, góc giữa đường chéo và mặt đáy.
Để giúp bạn đọc luyện tập với các bài toán tính thể tích khối lăng trụ đều, TOANMATH.com giới thiệu đề bài và lời giải chi tiết của 101 bài tập thể tích khối lăng trụ đều thường gặp trong chương trình Hình học 12 và đề thi THPT Quốc gia môn Toán.
Trích dẫn một số bài toán trong tài liệu bài tập thể tích khối lăng trụ đều có lời giải chi tiết:
+ Cho hình chóp S.ABCD có đáy ABCD là hình vuông, các tam giác SAB và SAD là những tam giác vuông tại A. Mặt phẳng (P) qua A vuông góc với cạnh bên SC cắt SB, SC, SD lần lượt tại các điểm M, N, P. Biết SC = 8a, góc ASC = 60 độ. Tính thể tích khối cầu ngoại tiếp đa diện ABCDMNP?
+ Từ một ảnh giấy hình vuông cạnh là 4cm, người ta gấp nó thành bốn phần đều nhau rồi dựng lên thành bốn mặt xung quanh của hình hình lăng trụ tứ giác đều như hình vẽ. Hỏi thể tích của khối lăng trụ này là bao nhiêu.
[ads]
+ Cho hình lăng trụ đều ABC.A’B’C’. Biết khoảng cách từ điểm C đến mặt phẳng (ABC′) bằng a, góc giữa hai mặt phẳng (ABC′) và (BCC’B′) bằng α với cosα = 1/2√3 (tham khảo hình vẽ dưới đây). Thể tích khối lăng trụ ABC.A’B’C’ bằng?
+ Cho lăng trụ tam giác đều ABC.A’B’C’ cạnh đáy bằng a, chiều cao bằng 2a. Mặt phẳng (P) qua B′ và vuông góc với A’C chia lăng trụ thành hai khối. Biết thể tích của hai khối là V1 và V2 với V1 < V2. Tỉ số V1/V2 bằng?
+ Cho khối tứ giác đều S.ABCD có thể tích là V. Nếu giảm độ dài cạnh đáy xuống hai lần và tăng độ dài đường cao lên ba lần thì ta được khối chóp mới có thể tích là?