Bài toán thực tế hình học không gian

Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán thực tế hình học không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 2.

I. LÝ THUYẾT TRỌNG TÂM
II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI
+ Người ta muốn thiết kế một bể cá bằng kính không có nắp với thể tích 72dm3 và chiều cao là 3dm. Một vách ngắn (cung mặt kính) ở giữa, chia bể cá thành hai ngăn, với các kích thước a b (đơn vị dm) như hình vẽ. Tính a b để bể cá tốn ít nguyên liệu nhất (tính cả tấm kính ở giữa), coi bề dày các tấm kính như nhau và không ảnh hưởng đến thể tích của bể.
+ Một bình đựng đầy nước có dạng hình nón (không có đáy). Người ta thả vào đó một khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 318π dm. Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa của khối cầu đã chìm trong nước (hình dưới đây). Tính thể tích nước còn lại trong bình.
+ Có một bể hình hộp chữ nhật chứa đầy nước. Người ta cho ba khối nón giống nhau có thiết diện qua trục là một tam giác vuông cân vào bể sao cho ba đường tròn đáy của ba khối nón tiếp xúc với nhau, một khối nón có đường tròn đáy chỉ tiếp xúc với một cạnh của đáy bể và hai khối nón còn lại có đường tròn đáy tiếp xúc với hai cạnh của đáy bể. Sau đó người ta đặt lên đỉnh của ba khối nón một khối cầu có bán kính bằng 4 3 lần bán kính đáy của khối nón. Biết khối cầu vừa đủ ngập trong nước và lượng nước trào ra là 337 3 3 cm π. Tính thể tích nước ban đầu ở trong bể.
BÀI TẬP TỰ LUYỆN.
LỜI GIẢI BÀI TẬP TỰ LUYỆN.

Ghi chú: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về:
Facebook: TOÁN MATH
Email: [email protected]