Tài liệu học tập Toán 10 học kì 1 sách Chân Trời Sáng Tạo

Tài liệu gồm 436 trang, được tổng hợp bởi thầy giáo Nguyễn Bỉnh Khôi, bao gồm tóm tắt lí thuyết, các dạng toán thường gặp và bài tập rèn luyện môn Toán 10 học kì 1 sách Chân Trời Sáng Tạo (CTST).

Chương 1. MỆNH ĐỀ VÀ TẬP HỢP 2.
Bài 1. MỆNH ĐỀ 2.
A Tóm tắt lí thuyết 2.
B Các dạng toán thường gặp 6.
+ Dạng 1. Nhận diện, xét tính đúng sai của mệnh đề, mệnh đề chứa biến 6.
+ Dạng 2. Phủ định của một mệnh đề 7.
+ Dạng 3. Mệnh đề kéo theo, mệnh đề đảo, mệnh đề tương đương 8.
+ Dạng 4. Mệnh đề với kí hiệu ∀ và ∃ 9.
C Bài tập rèn luyện 11.
Bài 2. TẬP HỢP 21.
A Tóm tắt lí thuyết 21.
B Một số dạng toán thường gặp 24.
+ Dạng 1. Tập hợp và phần tử của tập hợp 24.
+ Dạng 2. Tập con. Tập bằng nhau 25.
+ Dạng 3. Thực hiện các phép toán trên tập hợp 28.
+ Dạng 4. Dùng biểu đồ Ven và công thức tính số phần tử của tập hợp A ∪ B 29.
+ Dạng 5. Xác định giao – hợp của hai tập hợp 30.
+ Dạng 6. Xác định hiệu và phần bù của hai tập hợp 31.
C Bài tập rèn luyện 33.
Bài 3. ÔN TẬP CHƯƠNG 1 47.
A Bài tập tự luận 47.
B Bài tập trắc nghiệm 54.

Chương 2. BẤT PHƯƠNG TRÌNH, HỆ BẤT PHƯƠNG TRÌNH 62.
Bài 1. BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 62.
A Tóm tắt lí thuyết 62.
B Các dạng toán và bài tập 64.
+ Dạng 1. Biểu diễn tập nghiệm của bất phương trình bậc nhất hai ẩn 64.
+ Dạng 2. Áp dụng vào bài toán thực tiễn 65.
C Bài tập rèn luyện 67.
Bài 2. HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 87.
A Tóm tắt lí thuyết 87.
B Các dạng toán và bài tập 88.
+ Dạng 1. Biểu diễn hình học tập nghiệm của hệ bất phương trình bậc nhất hai ẩn 88.
+ Dạng 2. Ứng dụng hệ bất phương trình bậc nhất hai ẩn giải bài toán tối ưu 90.
C Bài tập rèn luyện 93.
Bài 3. BÀI TẬP CUỐI CHƯƠNG 2 105.
A Bài tập 105.
B Luyện tập 107.

Chương 3. HÀM SỐ, ĐỒ THỊ VÀ ỨNG DỤNG 114.
Bài 1. HÀM SỐ 114.
A Tóm tắt lí thuyết 114.
B Các dạng toán và ví dụ 116.
+ Dạng 1. Tìm tập xác định của hàm số 116.
+ Dạng 2. Tính giá trị của hàm số tại một điểm 118.
+ Dạng 3. Dùng định nghĩa xét tính đơn điệu của hàm số 119.
+ Dạng 4. Xét tính chẵn lẻ của hàm số 121.
+ Dạng 5. Tính đơn điệu của hàm bậc nhất 122.
+ Dạng 6. Dùng đồ thị xét tính đơn điệu của hàm số 124.
C Bài tập rèn luyện 127.
Bài 2. HÀM SỐ BẬC HAI 145.
A Tóm tắt lí thuyết 145.
B Các dạng toán và ví dụ 147.
+ Dạng 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số y = ax2 + bx + c (a khác 0) 147.
+ Dạng 2. Tìm tham số m để hàm số bậc 2 đơn điệu trên tập con của R 148.
+ Dạng 3. Tìm GTLN, GTNN của hàm số y = ax2 + bx + c trên R và tập con của R 149.
+ Dạng 4. Xác định hàm số bậc hai khi biết các yếu tố liên quan 151.
+ Dạng 5. Các bài toán tương giao 152.
+ Dạng 6. Điểm đặc biệt của họ đồ thị hàm số bậc hai 155.
C Bài tập rèn luyện 158.
Bài 3. DẤU CỦA TAM THỨC BẬC HAI 172.
A Tóm tắt lý thuyết 172.
B Các dạng toán thường gặp 175.
+ Dạng 1. Nhận dạng tam thức và xét dấu biểu thức 175.
+ Dạng 2. Giải các bài toán liên quan đến bất phương trình 176.
+ Dạng 3. Các bài toán liên quan bất phương bậc hai chứa tham số m 177.
+ Dạng 4. Tìm nghiệm và lập bảng xét dấu của tam thức bậc hai thông qua đồ thị 178.
+ Dạng 5. Ứng dụng thực tế 179.
C Bài tập rèn luyện 181.
Bài 4. PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI 191.
A Tóm tắt lí thuyết 191.
B Các dạng toán thường gặp 192.
+ Dạng 1. Giải phương trình dạng p f(x) = pg(x) 192.
+ Dạng 2. Giải phương trình dạng p f(x) = g(x) 192.
+ Dạng 3. Bài toán thực tế 193.
C Bài tập rèn luyện 194.
Bài 5. ÔN TẬP CHƯƠNG VI 210.
A Trắc nghiệm 210.
B Tự luận 225.

Chương 4. HỆ THỨC LƯỢNG TRONG TAM GIÁC 234.
Bài 1. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC TỪ 0◦ ĐẾN 180◦ 234.
A Tóm tắt lí thuyết 234.
B Các dạng toán thường gặp 234.
+ Dạng 1. Xét dấu của các giá trị lượng giác 234.
+ Dạng 2. Tính các giá trị lượng giác 235.
C Bài tập rèn luyện 239.
D Luyện tập 244.
Bài 2. HỆ THỨC LƯỢNG TRONG TAM GIÁC 251.
A Tóm tắt lý thuyết 251.
B Các dạng toán thường gặp 251.
+ Dạng 1. Tính các đại lượng trong tam giác 251.
+ Dạng 2. Chứng minh các hệ thức 253.
+ Dạng 3. Giải tam giác và ứng dụng thực tế 254.
C Bài tập rèn luyện 258.
Bài 3. ÔN TẬP CHƯƠNG 3 282.
A Bài tập tự luận 282.
B Bài tập trắc nghiệm 288.

Chương 5. VÉC TƠ 296.
Bài 1. CÁC KHÁI NIỆM MỞ ĐẦU 296.
A Tóm tắt lý thuyết 296.
B Các dạng toán thường gặp 297.
+ Dạng 1. Xác định một véc-tơ 297.
+ Dạng 2. Sự cùng phương và hướng của hai véc-tơ 297.
+ Dạng 3. Hai véc-tơ bằng nhau, độ dài của véc-tơ 298.
C Bài tập rèn luyện 300.
Bài 2. TỔNG VÀ HIỆU CỦA HAI VÉC TƠ 319.
A Tóm tắt lí thuyết 319.
B Các dạng toán thường gặp 320.
+ Dạng 1. Tổng, hiệu của hai hay nhiều véctơ 320.
+ Dạng 2. Chứng minh đẳng thức véctơ 321.
+ Dạng 3. Xác định vị trí của một điểm nhờ đẳng thức véctơ 322.
+ Dạng 4. Tính độ dài của tổng, hiệu các véctơ 324.
C Bài tập rèn luyện 326.
Bài 3. TÍCH MỘT SỐ VỚI MỘT VÉC TƠ 346.
A Tóm tắt lý thuyết 346.
B Các dạng toán 351.
+ Dạng 1. Xác định hai véc-tơ cùng hướng, ngược hướng 351.
+ Dạng 2. Tìm mô-đun (độ dài) véc-tơ 351.
+ Dạng 3. Chứng minh ba điểm M, N, P thẳng hàng 353.
+ Dạng 4. Biểu diễn véc-tơ qua hai véc-tơ không cùng phương 354.
+ Dạng 5. Chứng minh đẳng thức véc-tơ 355.
+ Dạng 6. Xác định điểm thoả mãn đẳng thức véc-tơ 358.
+ Dạng 7. Ứng dụng thực tế của véc-tơ 359.
C Bài tập luyện tập 361.
D Bài tập rèn luyện 364.
Bài 4. VECTƠ TRONG MẶT PHẲNG TỌA ĐỘ 378.
A Tóm tắt lí thuyết 378.
B Các dạng toán thường gặp 382.
+ Dạng 1. Tọa độ của điểm và độ dài đại số của một véc-tơ trên trục 382.
+ Dạng 2. Tọa độ của điểm và của véc-tơ 383.
+ Dạng 3. Tọa độ của điểm và véc-tơ thỏa mãn điều kiên cho trước 384.
+ Dạng 4. Phân tích một véc-tơ theo hai véc-tơ không cùng phương 386.
+ Dạng 5. Chứng minh ba điểm thẳng hàng, véc-tơ cùng phương, hai đường thẳng song song 387.
C Bài tập rèn luyện 389.
Bài 5. TÍCH VÔ HƯỚNG CỦA HAI VÉC – TƠ 402.
A Tóm tắt lí thuyết 402.
B Các dạng toán thường gặp 404.
+ Dạng 1. Xác định góc giữa hai véc-tơ 404.
+ Dạng 2. Tính tích vô hướng 405.
+ Dạng 3. Tính góc giữa hai véc-tơ 406.
+ Dạng 4. Ứng dụng của tích vô hướng 406.
C Bài tập rèn luyện 408.
Bài 6. ÔN TẬP CUỐI CHƯƠNG IV 418.
A Bài tập trắc nghiệm 418.
B Bài tập tự luận 425.

Ghi chú: Quý thầy, cô giáo và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về:
Facebook: TOÁN MATH
Email: toanmath.com@gmail.com